Q1) (10 points) True or False

- 1. The advantage of a stream cipher is that you can reuse keys.
 - a) True b) False)
- 2. The one-time-pad encryption scheme is CPA-secure.
 - a) True
 - (b) False
- 3. Any private-key encryption scheme that is CPA-secure must also be computationally indistinguishable:

b) False

4. If G' is a PRG, then $G(s) = G'(s) \oplus G'(\bar{s})$ is necessarily a PRG.

a) True b) False

5. If pseudorandom functions (PRF) exist, then pseudorandom generators (PRG) exist.

a) True b) False

6. Let Enc(K, M) be an IND-CPA secure encryption function. If Alice computes Enc("Hello", "World") and Bob computes Enc("Hello", "World"), they will always evaluate to the same ciphertext.

a) True b) False

7. The IV in counter (CTR) mode must be kept secret.

a) True b) False

- 8. CBC-mode encryption with PKCS#5 padding provides message integrity, as long as the receiver makes sure to verify the padding upon decryption.
 - c) True
- 9. Any private-key encryption scheme that is CCA-secure must also be CPA-secure.

a) True b) False

10. Properly used, a MAC provides both confidentiality and integrity.

a) True b) False

Q2) (10 points)
 Which of the following are true about the Vigenere cipher? a) The Vigenere cipher is computationally infeasible to break if the key has length 100, even if 1000s of characters of plaintext are encrypted.
b) The Vigenere cipher can always be broken, regardless of the length of the key and regardless of the length of plaintext being encrypted.
c) A Vigenere cipher with key of length 100 can be broken (in a reasonable amount of time) using exhaustive search of the key space.
The Vigenere cipher is perfectly secret if the length of the key is equal to the length of the messages in the message space.
2- Let $G: \{0,1\}^s \to \{0,1\}^n$ be a secure PRG. Is $G'(k) = G(k) \oplus 1^n$ is secure PRG? A) Yes it is secure b) No it is not secure
 c) It depends on the distinguisher algorithm A d) Not enough information to determine
3- In the definition of perfect secrecy, what threat model is assumed?
a) The attacker can eavesdrop on as many ciphertexts as it likes The attacker can eavesdrop on a single ciphertext
c) The attacker is able to interfere with the communication channel between the two honest parties. d) The attacker can carry out a chosen-plaintext attack
4- Which of the following is NOT true about computational secrecy?
A) A tompatational secrecy currently relies on unproven assumptions
Computational secrecy means that it is trivial for an attacker to always learn the entire message
Computational secrecy only ensures secrecy against attackers running in some bounded amount of time (d) Computational secrecy allows an attacker to learn information about the message with small probability
5- Consider a pseudo one-time pad encryption scheme Π constructed using some function G . Which of the following
did our proof of security for the pseudo one-time pad show? a) Π is always perfectly secret, for any G
b) Π is always computationally secret, for any G
c) If G is a pseudorandom generator, then Π is perfectly secret
If G is a pseudorandom generator, then Π is computationally secret
6- Double-DES was broken with the following attack:

- a) Linear cryptanalysis attack
- b) Man-in-the-middle attack
- c) Meet-in-the-middle attack
- d) Start-from-the-middle attack
- 7- Suppose Alice uses CBC Mode for encrypting a message m. However, she forgets the value she used for IV, but has c and k. Can she recover m?
 - a) Almost everything except m_1 (Where m_1 is the first block)
 - b) Can only recover m_{n-1}
 - c) Can only recover m_n
 - d) Almost everything expect m_1 and m_2

8-	Say	we use CBC-mode encryption based on a block cipher with 256-bit key length and 28-bit block length to encrypt
		12-bit message. How long is the resulting ciphertext?
0	a	640 bits 12 8 x
	(b)	640 bits 512 bits 769 bits
	c)	768 bits 5 1 2
	d)	Not enough information to determine.
9-	On	e type of attack not covered by the definition of secure MAC scheme.
	a)	Forgery attack
	b)	Collision Attack
, <	E)	Replay attack
	d)	Key recovery attack
		and the same of th
10	- Wi	nich of the following is the most appropriate primitive for achieving message integrity between two users sharing
		rey?
1	3	Message authentication code
•	1	Block cipher
	c)	Collision-resistant hash function
-		Private-key encryption scheme
/	,	

Q3) (5 points)

Let F be a block cipher with 128-bit block length. Consider the following encryption scheme for 256-bit messages: to encrypt message $M=m_1\parallel m_2$ using key k (where $|m_1|=|m_2|=128$, choose random 128-bit r and compute the ciphertext $r\parallel F_k(r)\oplus m_1\parallel m_2$ Show how you could mount a valid chosen-plaintext attack (CPA) against this encryption scheme?

1100-

Q4) (5 points)

If Alice encrypts a message with <u>AES-CBC</u>, but instead of using completely random IVs, she uses r, r+1, r+2, and so on, where r is a random value that she chose once. Explain whither if this scheme is IND-CPA secure or not.

Let F be a PRF. Show that the following constructions of MAC are insecure. Let $\mathcal{K}=\{0,1\}^n$ and $m=m_1$ \parallel $\cdots \parallel m_\ell \text{ with } m_i \in \{0,1\}^n \text{ for } i \in [1,\ell].$

-a) Send $t = F_k(m_1) \dots \oplus F_k(m_\ell)$.

when make attacker send a first msg m = m, Umr - 11.

The receives tag = t

if the attacker send again a new msg mi thats

m' = m! (t \mathread m) (t| \dip | m!. How you xored them?

then \frac{1}{2} = \begin{picture} F_K(m!) \mathread F_K(m!) \mathr

the server send the same tay with defficent msgs $S(k, m_B) = S(k, m')$ Then MAC break

b) Pick $r \leftarrow \{0,1\}^n$, compute $t = F_k(r) \oplus F_k(m_1) \oplus ... \oplus F_k(m_\ell)$ and send (r,t).

sending The first may m=mill-...Ilml

Scanned with CamScanner

C= F(k,v)(1) m(0)

Assume an honest user wants to send an 8-bit integer to their bank indicating how much money should be transferred to the bank account of an attacker. The user uses CTR-mode encryption based on a block cipher F with 8-bit block length. The attacker knows that the amount of money the user wants to transfer is exactly \$16, and has compromised a router between the user and the back. The attacker receives the ciphertext 10111100 01100001 (in binary) from the user. What ciphertext should the attacker forward to the bank to initiate a transfer of exactly \$32?

|m1 = 8 bi+ The first block block for The second block (+)000000 Bor The Sirst Class
block m(o) (1) to with other is will return K wit CTR = 0 That's if the CTR starts with h'O' Nen der m[0] = 3 Bothe 2nd block 0111110 c'(4) = c'(0) (F) F(k,1, m c [0] F(k,1, ma)=) 10111101 (Tr 00000001 10111100 m(1) 000001101 7 F(K1,m(1)) 10111010 10111110 00000101